Tüfteln für eine LED-Tapete der Zukunft

  • Geschrieben von Daniel
  •  - 
  •  - Zugriffe: 533
(Geschätzte Lesezeit: 2 - 3 Minuten)

2018 02 13 LED Tapete 1

Physiker der Universität Bremen haben einen wichtigen Beitrag zum Verständnis neuartiger atomar dünner Materialien für effiziente biegsame Displays auf gekrümmten Oberflächen geleistet. Die Ergebnisse hat kürzlich die international renommierte Fachzeitschrift „Nature Communications“ veröffentlicht. Wir leben in einer Welt von Displays, deren Größe und farbliche Brillanz ständig zunehmen. Bei der Weiterentwicklung der Glühbirne ist es einfach: Sie wird immer mehr durch LEDs ersetzt, in denen sogenannte Halbleiter das Licht erzeugen. Die Einsatzmöglichkeiten von Displays sind jedoch beschränkt, da herkömmliche Halbleitermaterialien eher unflexibel und starr sind. Mit organischen Leuchtdioden (OLEDs) können zwar biegsame Displays hergestellt werden, jedoch sind Lebensdauer und Lichtausbeute niedriger als bei ihren anorganischen Verwandten.

Nun sind neue Materialien im Gespräch, die extrem dünn sind, sehr intensiv leuchten und sich zugleich erstaunlich einfach herstellen lassen: Mit herkömmlichem Klebeband kann man im Labor einzelne atomare Lagen von speziellen Kristallen abziehen. Besonders geeignet sind hierfür die sogenannten Van-der-Waals-Kristalle. Eine zentrale Idee ist hierbei das Prinzip des „Lego-Baukastens“. Man kombiniert die Funktionalitäten leuchtender und elektrisch leitender atomar dünner Materialien miteinander, indem man sie direkt aufeinanderstapelt.

Innovatives Material ermöglicht Einsatz in Sensoren und Solarzellen

Die auf diese Weise erzeugten Materialien weisen eine enorme mechanische Stabilität auf. Sie leuchten nicht nur sehr gut, sie absorbieren auch Licht und können es in Strom umwandeln. Deshalb gibt es bereits erste Anwendungen in sehr empfindlichen Sensoren, denkbar ist auch ihre Verwendung in biegsamen Solarpanels. Diese Eigenschaft ist im Hinblick auf den wachsenden Bedarf an erneuerbaren Energiequellen besonders interessant.

Tanzendes Spiel der Teilchen erforscht

Licht in einem bestimmten Bereich des Farbspektrums wird in Halbleitern durch das Zerstrahlen positiver und negativer elektrischer Ladungen erzeugt. Wegen ihrer unterschiedlichen Polaritäten ziehen sich die entgegengesetzten Ladungen an und können sich zu neuen Verbundteilchen, sogenannten Exzitonen, mit veränderten Eigenschaften zusammenschließen. Das Physikerteam der Universität Bremen hat im Rahmen der Grundlagenforschung zu den neuen Materialien eine Methode entwickelt, mit der diese Verbundteilchen sichtbar gemacht und studiert werden können.

Die Wissenschaftler haben analysiert, wie dieses Auftreten der Verbundteilchen von der Anzahl der Ladungen abhängt, die man bei einer Leuchtdiode von außen steuern kann. „Die ungleichen Ladungen zeigen hierbei ein Verhalten ganz ähnlich dem von Tänzern auf einer unterschiedlich bevölkerten Tanzfläche. Ist die Dichte gering, befinden sich also sehr wenige Tänzer auf der Fläche, so finden sich keine Partner und jeder tanzt für sich allein. Auf einer gut gefüllten Tanzfläche hingegen finden sich Paare zusammen und tanzen ungestört jedes für sich. Eine übervolle Tanzfläche schließlich führt zu ständigen Kollisionen der Paare, so dass diese sich trennen und jeder wieder allein tanzt.“, erläutert Nachwuchswissenschaftler Dr.  Alexander Steinhoff die Forschungsergebnisse.

„Wir konnten zeigen, dass die Verbundteilchen mittels der sogenannten Photoelektronenspektroskopie sichtbar gemacht werden können“, erklärt er. „Hierbei wird ein hochenergetisches Lichtteilchen eingestrahlt. Das zusammengesetzte Teilchen wird zerschlagen und seine Bestandteile aus dem Halbleiter herausgelöst und detektiert, um auf die Struktur des Verbundteilchens zu schließen.“

Neue Methode bringt Struktur in den Tanz

Die Autoren regen in dem Nature-Artikel an, diese Erkenntnisse zu nutzen. Das Verhältnis zwischen freien und gepaarten Ladungen beeinflusst direkt die optischen und elektronischen Eigenschaften des Materials. Es kann durch gezielte Strukturierung der Umgebung gesteuert werden, auf die atomar dünne Materialien sehr sensitiv reagieren. Die Wissenschaftler leisten hiermit einen wichtigen Beitrag für die Handhabung des „Lego-Baukastens“ und die Herstellung von ultradünnen optoelektronischen Bauteilen mit maßgeschneiderten Eigenschaften.

Foto & Quelle: Universität Bremen

Diese Artikel könnten dich auch interessieren

27.07.2018 BREMINALE

 Breminale 2018 - Foto: Patrick Nagel (c) szenenight.de Es gab Jahre, da hatte die Breminale echt Pech mit dem Wetter. Petrus schenkte dem kostenlosen Fest an der Weser...

Weiterlesen

Flucht vor Verkehrskont…

Quelle: Polizei Bremen Foto: maimento 123RF Am späten Dienstagabend versuchte ein 29-jähriger Bremer in Gröpelingen vor einer Verkehrskontrolle zu fliehen. Der Mann war ohne gültige Fahrerlaubnis...

Weiterlesen

13.07.2018 2RAUMCLUB

Die Ferien haben begonnen und somit ist gnadenlos viel Zeit zum Party machen in Bremen. Passend dazu startet der 2raumclub mit einer neuen Partyreihe ganz...

Weiterlesen

28.07.2018 STUBU

Puh die kurze Abkühlung tat mir echt gut. So konnte ich wirklich völlig entspannt mich auf den Weg ins Stubu machen. Ein vertrauter Weg, ein Weg zu einer Party Nacht, bei...

Weiterlesen

Helfer mit Pfefferspray…

Ein 24 Jahre alter Mann eilte am Dienstagabend im Bremer Steintorviertel einer Frau zu Hilfe, die von einem Angreifer geschlagen wurde. Der Aggressor sprühte dem...

Weiterlesen

LEA – „ZU DIR“ AKUSTIK-…

„Zu Dir gilt den Menschen in meinem Leben, bei denen ich einfach sein kann, wie ich bin, ohne mich verstellen zu müssen und zu denen...

Weiterlesen

Anmelden oder Registrieren